Бийский завод стеклопластиков
555.png
+7 (3854) 442-444; 448-000


Критерии для выбора тарельчатого дюбеля при проектировании системы утепления фасада здания

Автор: Луговой А.Н. канд. техн. наук, начальник лаборатории (ООО «Бийский завод стеклопластиков»).

Утепление фасадов зданий посредством различных фасадных систем прочно вошло в практику отечественного строительства. При всем разнообразии набора конструктивных элементов, входящих в те или иные фасадные системы, все известные на сегодняшний день фасадные системы содержат крепежные элементы-тарельчатые дюбели, предназначенные для надежного крепления теплоизолирующего слоя к утепляемой стене.

Типичный дюбель, используемый для крепления теплоизоляции к стене, состоит из полой пластмассовой гильзы с тарельчатым держателем и распорного элемента и удерживается в стене слой трения между анкерной зоной гильзы и материалом стены. Поэтому начинать выбор дюбеля следует с изучения сведений о материале, из которого изготовлена гильза. Сила трения, удерживающая гильзу в стене, зависит от натяга, определяемого разностями: диаметра отверстия в стене, наружного диаметра гильзы, диаметра отверстия в анкерной зоне гильзы и диаметра распорного элемента. Очевидно, что при таком способе создания удерживающего усилия долговременная прочность закрепления дюбеля в стене зависит от того, как долго материал гильзы будет сохранять созданные в нем напряжения от распора, т.е. от характеристики материала именуемой «ползучесть». Так, например, широко распространенные и привлекательные для потребителей из-за относительной дешевизны пластмассы полиэтилены и полипропилены нельзя применять для изготовления гильз дюбелей, вследствие относительно высокой ползучести этих материалов, приводящей к релаксации напряжений [1]. Вследствие этого натяг, созданный при забивании (закручивании) распорного элемента в гильзу дюбеля, изготовленного из полиэтилена или полипропилена, через относительно короткий промежуток времени исчезнет, а прочность закрепления такого дюбеля в утепляемой стене будет ничтожной, практически нулевой. Лучшими (по критерию «цена-качество») материалами для изготовления гильз тарельчатых пластмассовых дюбелей, используемых для крепления теплоизоляции в фасадных системах, являются полиамиды, имеющие повышенные в сравнении с полиэтиленами и полипропиленами характеристики прочности и ползучести (см. рисунок 1) [1].

Рисунок 1 – Зависимость деформации ε от напряжения σ при 23 °С и продолжительности действия напряжения 1000 ч.

Рисунок 1 — Зависимость деформации ε от напряжения σ при 23 °С и продолжительности действия напряжения 1000 ч.

Самым опасным заблуждением для рядового потребителя при выборе дюбеля, изготовленного из того или иного материала, является то, что первоначальные прочности закрепления в стене дюбеля из полипропилена и полиамида приблизительно равны (у полиэтилена же примерно в 2 раза ниже), поэтому потребитель, естественно, склонен к выбору дюбелей изготовленных из более дешевых материалов. Однако, по истечению некоторого (короткого в сравнении с расчетным сроком службы системы утепления) промежутка времени, разница в прочности закрепления будет поразительной: дюбели из полиэтилена и полипропилена можно будет извлекать из стены минимальным усилием руки. Но дюбели к тому времени будут уже закрыты слоем штукатурки (в системах с тонким штукатурным слоем) или облицовочным материалом (в системах с вентилируемым зазором) и проверить прочность закрепления дюбеля без сложных процессов вскрытия будет невозможно. Дефект же неизбежно проявится в процессе эксплуатации и повлечет, в лучшем случае, необходимость срочного капитального ремонта фасадной системы.

Кроме того, полипропилен при температурах ниже плюс 10 градусов становится хрупким и дюбель, изготовленный из этого материала, может разрушаться даже в процессе установки.

К распорному элементу (РЭ) также предъявляют ряд требований.

Во-первых, он должен иметь минимальную теплопроводность, чтобы избежать явлений «мостиков холода» и конденсации влаги. Мостики холода влияют на эффективность утепления, а конденсирующаяся на распорном элементе влага вызовет повреждение штукатурного слоя (в системах утепления со штукатурным слоем), кроме того, увлажнение теплоизолирующего материала от сконденсировавшейся влаги в свою очередь снизит эффективность теплоизоляции [2].

Во-вторых, РЭ должен иметь высокую коррозионную стойкость; он должен противостоять агрессивному коррозионному воздействию окружающей среды в течение всего срока службы фасадной системы. Коррозия РЭ влечет за собой два неприятных явления: уменьшение эффективного поперечного сечения, а значит снижение прочности РЭ, а также появление на поверхности РЭ, вследствие химических реакций при коррозии, солей, цвет которых, как правило, не совпадает с цветом штукатурного слоя. Растворившись в воде (сконденсировавшейся влаге), соли, проступая на штукатурном слое, могут портить его внешний вид или даже разрушать, вступая в химическую реакцию с веществами, составляющими штукатурный слой.

В-третьих, РЭ должен обладать достаточной прочностью на растяжение, изгиб и поперечный срез. А некоторые специалисты в области проектирования фасадных систем считают, что идеальный РЭ должен обладать максимальной деформативностью при изгибе [3]. Т.о. РЭ должен быть изготовлен из материала, имеющего высокую прочность, но малое значение модуля упругости.

Совокупности всех этих требований идеально удовлетворяют стеклопластиковые распорные элементы. Например, сравним, характеристики стеклопластикового РЭ, применяемого в дюбелях, выпускаемых Бийским заводом стеклопластиков с характеристиками воображаемого стального распорного элемента, который мог бы войти в состав тарельчатого дюбеля, аналогичного дюбелю, известному под маркой «Бийск», но отличающегося материалом из которого изготовлен РЭ. Сведем сравниваемые характеристики в таблицу.

Сравниваемая характеристика

Сравниваемые распорные элементы

Стеклопластиковый [4,5,6]

Стальной (сталь 20) [7]

Диаметр

5,5 мм

5,5 мм

Прочность на растяжение

Не менее 1500 МПа

?0,2=245 МПа; ?в=410 МПа

Модуль упругости

50 ГПа

200 ГПа

Прочность на поперечный срез

Не менее 240 МПа

τ=0,6·?0,2=0,6·245=147 МПа

Удельная теплопроводность

0,48 Вт/(м•К)

(49-58) Вт/(м•К)

Как видно из таблицы, по прочностным характеристикам стеклопластиковый РЭ превосходит РЭ из широко распространенной стали 20, а модуль упругости стеклопластика примерно в 4 раза ниже чем у стали. Высокая коррозионная стойкость стеклопластиков корректно и убедительно доказана и хорошо известна [8,9,11], в то время как коррозионная стойкость стального крепежа вызывает в настоящее время много вопросов [12]. Теплопроводность стеклопластика в 100 раз ниже теплопроводности стали, поэтому тепловые расчеты систем утепления фасадов, проведенные НИИСтройфизики [13], показали, что использование дюбелей со стеклопластиковыми РЭ практически не вносит возмущений в температурное поле системы тепловой защиты (коэффициент тепловой однородности составляет 0,998 при размещении 10 дюбелей на 1 м2 утепляемой стены). Использование дюбелей со стальным РЭ значительно снижает тепловое сопротивление системы (коэффициент тепловой однородности составляет 0,897 при размещении 5 дюбелей на 1 м2 утепляемой стены и 0,816 при размещении 10 дюбелей на 1 м2 утепляемой стены). Вследствие этого, использование в системе утепления дюбелей с РЭ из стеклопластика позволяет применить утеплители не менее чем на 12% меньшей толщины, по сравнению с системой утепления, в которой использованы дюбели со стальными РЭ и таким же значением нормируемого сопротивления теплопередаче [14].

Т.о. крепежные элементы фасадных систем утепления — тарельчатые строительные дюбели с гильзой, изготавливаемой из полиамидов, и с распорным элементом из стеклопластика в наибольшей степени удовлетворяют требованиям надежности по критериям прочности, долговечности, теплопроводности, коррозионной стойкости.

ЛИТЕРАТУРА

  1. Калинчев Э.Л., Саковцева М.Б. Выбор пластмасс для изготовления и эксплуатации изделий. Справочное пособие. Л.: «Химия» Ленинградское отделение, 1987. 415 с.
  2. Лобов О.И., Ананьев А.И., Кувшинов Ю.Я. Анализ требований СНиП II-3-79*, СНиП 23-02-2003 и ТСН с точки зрения Закона «О техническом регулировании» Строительный эксперт № 5, 2004.
  3. Колесников Р.В. Механическое крепление многослойных теплоизоляционных систем.//СтройПРОФИль. № 10 (14) 2001.
  4. ТУ 2296-001-20994511-06 Арматура стеклопластиковая. Технические условия.
  5. ТУ 2296-006-20994511-07 Дюбели тарельчатые строительные стеновые забивные «БИЙСК». Технические условия.
  6. ТО-2166-08. Дюбели тарельчатые строительные стеновые забивные «БИЙСК» типа ДС-1 и ДС-2. Техническая оценка пригодности продукции для применения в строительстве. ФГУ «ФЦС» Росстроя.
  7. Марочник сталей и сплавов. 2-е изд., и испр./А.С. Зубченко, М.М. Колосков, Ю. В Каширский и др. Под общей ред. А.С. Зубченко — М.: Машиностроение, 2003. 784 с.: илл.
  8. Блазнов А.Н., Волков Ю.П., Луговой А.Н., Савин В.Ф. О химической стойкости стеклопластиковой арматуры//Проектирование и строительство в Сибири. — 2003. — № 3(15). — с. 34-37.
  9. Волков Ю.П., Луговой А.Н., Савин В.Ф. Результаты сравнительных испытаний стойкости в агрессивных средах гибких связей из стеклопластика и базальтопластика//Проектирование и строительство в Сибири. — 2004. — № 3. — с. 34-36.
  10. Волков Ю.П., Луговой А.Н., Савин В.Ф.Стойкость стеклопластиковой арматуры к воздействию агрессивной среды бетона.//Доклад на Международной конференции «Проблемы долговечности зданий и сооружений в современном строительстве» г. Санкт-Петербург, 2007.
  11. Акулов Г.В, Андрейчук В.И., Устинов В.П, Устинов Б.В. Комплексная сравнительная оценка гибких связей их полимерных композиционных материалов.//Доклады VI Всероссийской научно-практической конференции «Техника и технология производства теплоизоляционных материалов из минерального сырья» М. ФГУП «ЦНИИХМ» 2006.
  12. Орлов В.И. Коррозия узлов крепления, или короткая жизнь оцинкованного крепежа. //СтройПРОФИЛЬ. — 2008 — № 2(64).
  13. Научно технический отчет по теме «Расчет приведенного сопротивления теплопередаче и коэффициента теплотехнической однородности фасадной системы с тонким штукатурным слоем при креплении утеплителя стеновыми дюбелями «БИЙСК». — М. НИИСФ, 2008.
  14. СНиП 23-02-2003 Тепловая защита зданий.

Возврат к списку

Система менеджмента качества ISO 9001:2015   

© Все права защищены.
Общество с ограниченной ответственностью
«Бийский завод стеклопластиков»
 
Индекс: 659316, Россия, Алтайский край
г. Бийск, ул. Ленинградская 60/1
Тел./факс: +7 (3854) 448-000, 450-283
E-mail: bzs@bzs.ru